Skip to main content

Recent advances in cancer treatments

Cancer Image credit:
As per estimates of American Society of Clinical Oncology, 14 million people worldwide will learn that they have cancer this year and 9 million will lose their lives. Their estimates for the year 2030 are even worse and present an alarming situation for cancer patients and their families. We have been hearing about personalized medicine for many years now but the last year or so, there have been some great advances that have made their way from research labs to real world clinics and with regulatory approvals. Here is a look at some recent advances in cancer treatments. 

Traditional cancer treatment use the chemotherapy approach that bombards the body with cytotoxic drugs and has a 50-50 chance of killing normal as well as cancerous cells.As treatments improved, we moved to drugs that inhibit the growth of cancerous cells, typically the Tyrosine Kinase Inhibitors (TKIs). As our understanding of cancer has improved, the approach has changed from trying to find a cure to leveraging our own immune system to fight cancerous cells.


The promise of T-cell mediated immunotherapy, where one's own T-cells could be reprogrammed to fight cancer cells has now to fruition. In the past year, the Food and Drug Administration (FDA), approved not one but two T Cell immunotherapy treatments, one for B-cell Lymphoma (Kymriah) and the other for Acute Lymphoblastic Leukemia (Yescarta) that use this approach for fighting cancer. 

T cell immunotherapy
Process flowchart for generating modified T Cells and using them for treatment in cancer patients. Image credit:

Check Point Inhibitors

T cells occupy a very important place in our immune system and protect us against a large number of harming agents such as viruses, bacteria and even cancerous cells. It is now known that certain cancers inhibit the ability of T cells from recognizing cancerous cells and are able to move around in the body without being detected. 

T cells use PD-1 protein as a checkpoint to ascertain whether a cell should be attacked or not. If the cell being checked has a PD-L1 protein then the cell is safe. Cancer cells of the lung, kidney, neck, skin and bladder use this PD-L1 protein to safeguard themselves. By using a check point inhibitors, one can block the PD-L1 protein on cancerous cells and help T-cells recognize them for what they really are! 

In the past year, the FDA has approved use of Avelumab (Bavencio) and Durvalumab (Imfinzi) for treatment of Merkel Cell carcinoma and Urothelial carcinoma respectively.  Other, PD1 inhibitors such as Pembrolizumab (Keytruda) and Nivolumab (Opdivo) that have already been approved by the FDA have found new approvals for new cancers such as primary mediastinal large B-cell Lymphoma (PMBCL) and renal cell carcinoma respectively.

A large number of cancer drugs go through their R&D pipeline but fail to show desired effects in patients during their clinical trials. A few decades earlier, one would have simply deserted these drugs forever, but with the increasing availability of sequencing technology at reduced prices, one can now relate genetic variations in patients with the medication outcomes. 

Digging deeper, scientists have also found that select mutations in tumor tissue can make a medication work better or worse, giving rise to a large number of companion diagnostic tests that can help clinicians and patients determine which drug can have better outcomes.

Foundation One CDx

Many labs have developed their own companion diagnostic tests, often in partnership with pharma companies that manufacture the drugs. The FDA has approved some of these tests, while others are still under the process of validating their tests. Foundation Medicine, a Massachusetts based company, has now obtained FDA approval for their broad range companion diagnostic test, called Foundation One CDx.

Using Next-Gen Sequencing, the test seeks mutations as well as copy number variations in 324 genes in the tumour tissue and reports any actionable mutations for non-small cell lung cancer, melanoma, breast, ovarian and colorectal. Reports are available in just 2 weeks and costs covered by Medicare in the US.

Advancements and findings in cancer research often take a lot of time to reach publication houses from where they can be accessed and put into practice by physicians and clinicians. Updates to existing clinical practices also meet the same fate and any advantages or disadvantages of using a treatment method for a particular patient must reach the physician immediately. This requires real time data sharing between oncologists and clinicians around the globe.

Data Driven Decision Making 

Clinical reports for cancer patients are often fragmented with each report to be analysed by a specialist in his or her field and making decisions that affect medical outcomes.Gathering all relevant clinical data of patients and making a comprehensive report is the need of the hour in cancer care. 

Chicago based Tempus, processes lab reports, clinical notes, radiology scans as well as pathology reports to truly understand the clinical context of the case. It then produces a comprehensive report with not only specific treatment options for the patient but also details of clinical trial matches, candidacy for immunotherapy treatments and supports its recommendations with patient data obtained in real-time and matched by tumor types and genetic profiles. 

Combined together, cancer treatments have entered the era of precision personalized medicine and it is now the time to raise awareness about treatment options available to one and all.



Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…