Skip to main content

Genes don't call all the shots, your environment does to.

The usage of the terms such as 'DNA' and 'genes' has exploded in recent years and is  commonly used to denote characteristics and traits in people, features of products and even as lyrics for a song. The theory of genetics that genes assign traits to individuals has been rooted so deeply into our psyche, that we fail to see the other side of the story completely. The role of the environment in shaping how our genes function is a fact that is unheard by many people and is something I would like to shed a little light on in this post.
Image credit:

The public understanding about genetics is more or less like the way people follow astrology . If the newspaper predicts that the day at work will not go well, we tend to blame the stars/ sun sign for everything that goes wrong that day. Similarly, the presumption that genes control the way we function and act, has set the tone for genes to be solely in control of everything that is happening inside our cells. However, this is not how genes work. There is a machinery that allows genes to adapt to their surroundings without actually changing the DNA sequence. These are not mutations that are stopping gene function or restarting them, these are minor changes that can increase or decrease gene expression, introduced as a result of conditions in the organisms environment. Called epigenetics, these changes are inheritable and can be passed on to future generations as well. 

In the past, there have been many studies that have shown how epigenetic changes can be brought about in genes. Methylation of DNA, role of non-coding RNA and modification of histone proteins are a few of the epigenetic methods that we have been able to unearth so far. A recent study published in Science by Daniel Simola and colleagues studied histone protein modification in carpenter ants and were able to externally amend behaviour in these ants.

Description: This image shows a Carpenter ant ...
A Carpenter ant (Camponotus ligniperda)
(Photo credit: Wikipedia)
The colony of a carpenter ant consists of a queen, her brood and several thousands of workers. We know that all worker ants are genetically the same but are given different tasks in their colonies. There is no exception in carpenter ants as well, where smaller ants or minors are assigned the task of taking care of the young and forage for food, whereas the larger ants or majors defend the colony. Using drugs that affect acetylation of histone proteins (Histone deacetylases or HDAC, the researchers saw an increase in scouting and foraging activity in minor ants. Thus, lower the acetylation, larger was foraging activity seen in the ants. Conversely, this increased foraging could be dropped by using a inhibitor of histone acetyltransferase (HATi). 

Diagram showing behavioral differences in major and minor carpenter ants when treated with HATi and HDACs.
Image credit: Simola et al., 2016. doi:10.1126/science.aac6633
Using this information, the researchers were able to induce foraging behaviour in major ants (who are built to defend and protect) and retain them for up to 50 days of age. This goes to show that even though these ants are genetically programmed to carry out a certain task, their behaviour can be modified using external factors. Since a large number of these proteins and enzymes are common among insects and even vertebrates, it is safe to assume that such epigenetic change in behaviour can be brought about in vertebrates as well. 

The study also found that there is a window of opportunity, where epigenetic changes can result in behaviour modification and there is a lot of work to be done to understand this window, right from why it exists, how it functions to why it closes as the animal matures. Nevertheless, the study manages to show that genes are not in complete control and your environment has say too. 

If you liked reading this post, you might also like our other post about cells not being ruled by genes.

If you would like to read more of these interesting stories from the world of science, subscribe to our  blog and we will send you an email every time we post something new and interesting. Alternatively, you can follow us on social media such as FacebookTwitter or Google Plus!


Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, Zwiebel LJ, Bonasio R, Reinberg D, Liebig J, & Berger SL (2016). Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science (New York, N.Y.), 351 (6268) PMID: 26722000


Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…