Skip to main content

Genetically Modified Plant can help clear TNT from soil

TNT explosion image credit:

As a species, humans hardly grasp the ramifications of their actions. Whether it be the rapid climate change or the shattering effects of war. Even though we realise that we are the main culprits in both these cases, under no circumstances do our actions look like we are on the course of correction. The snail's pace of climate talks or our outright refusal to contribute to dialogue and engage in wars instead are proof enough to show that left to politicians, sooner or later our Earth's environment will soon turn hostile for our own survival and bring our end nearer. 

Plants, on the other hand, are entirely different. Slow yet sure in their approach, these silent beings are always trying to maintain the balance that is being disturbed, thanks to human activities. Since the beginning of our civilization, plants have always provided for us, whether in the form of naturally available fruits or planned growth of crops as our ancestors turned agrarian. As we are also aware, plants have also been the suppliers of valuable oxygen for millions of years, something that keeps us alive every single day. But as our habits changed and we started using fossil fuels, plants quickly adapted to that as well and continued to clean up the air of volatile organic compounds. Studies such as the one done by Thomas Karl and colleagues at National Center for Atmospheric Research (NCAR) showed that plants absorb up to 40% these volatile organic compounds (pollutants) and even increase their intake, if the environmental stress is higher. 

Their behaviour in presence of other pollutants such as TNT (2,4,6 - Trinitrotoluene) is unbelievable. TNT is an explosive compound and heavily used in explosives to cause maximum damage. Areas affected with war often turn barren because of the heavy dosage of TNT that is left behind in the soil. When TNT is taken up by the plant, it enters the mitochondria (the power house of the cell) and reacts with atmospheric oxygen to form a reactive superoxide that damages plant cells and restricts their growth. Yet, plants do not give and continue to uptake TNT and break it into substances that they can use.

Researcher Emily Johnston and her team at the University of York, recently studied the reaction in the mitochondria that leads to the formation of the superoxide. Their study found that MDHAR6, short for monodehydroascorbate reductase 6, enzyme is essential for formation of the superoxide and causes damage to the plants. Johnston and her colleagues went a step ahead and created a plant with a mutant MDHAR6 gene so that the enzyme created is faulty and does not react with TNT. Since the superoxide is not formed, plants continue to grow normally, even in the presence of TNT and slowly work towards clearing the contaminated land of explosive compounds.

Mutant Plants growing in soil containing TNT. Image credit:
Researcher Emily Johnston and her team at University of York have created a genetically modified plant that can grow in soil containing explosives like TNT

Another exciting outcome of this research is the potential to develop new herbicides for use on farm lands. Since, we now know how compounds like TNT can stall vegetative growth, we can experiment with various compounds that can potentially be used to control growth of weeds on farmlands. The study was published in the Science Magazine and is referenced below for further reading.

This finding is also important in the wake of rising resistance to everything that is genetically modified. Asking for a blanket ban on everything genetically modified is not helping our growth. Instead, we must consider each modification on a case to case basis and outweigh the pro and cons before deciding to support or oppose the use of the technology.

If you would like to read more of these interesting stories from the world of science, subscribe to our  blog and we will send you an email every time we post something new and interesting. Alternatively, you can follow us on social media such as FacebookTwitter or Google Plus!


Karl T, Harley P, Emmons L, Thornton B, Guenther A, Basu C, Turnipseed A, & Jardine K (2010). Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science (New York, N.Y.), 330 (6005), 816-9 PMID: 20966216

Johnston EJ, Rylott EL, Beynon E, Lorenz A, Chechik V, & Bruce NC (2015). Monodehydroascorbate reductase mediates TNT toxicity in plants. Science (New York, N.Y.), 349 (6252), 1072-5 PMID: 26339024


Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…