Skip to main content

Why viruses are not in our good books?

For all their amazing abilities of being able to survive outside their host, replicate in large numbers and still not be called 'living', viruses have failed to get some positive reviews for themselves. This is likely to be because the term virus is associated with some of the most scariest diseases in human history. Influenza, AIDS, SARS and the recent spread of Ebola, all have their roots in the term 'virus'. Yet, today, we will not dwell on how bad viruses are or the havoc they can cause. This post is more about how intelligent can viruses be! 

Parasitoid, Microplitis infecting larvae
Microplitis infecting its host worm.
Although most viruses are associated with harmful diseases that are caused as a result of infection, there is also a large family of viruses who have a friendly association with their hosts. Called Polydnaviruses, these viruses have long been known to exist, mutually, with their hosts, the parasitoid wasps (which rely on smaller insects such as worms for their reproduction). On gaining maturity, the parasitoid wasps lays its eggs in the body of a living worm, where they incubate and hatch after the gestation period.

When the wasp lays eggs into the the worm, it is quite natural that the worm's immune system will detect a foreign body and act against it. While the wasp has no control over the immune system of the worm, it is the Polydnavirus, that it has injected, along with its eggs, that it depends upon to keep its eggs safe.

Polydnaviruses have just two main missions in their life cycle. 

1. Help its host infect the worm necessary for its survival.   

Polydnaviruses are capable to creating some unique proteins that can bring down the first line of defence in the worm body, the hemocytes. After infecting, the cells of the host worm, the virus quite generously chooses to only weaken the worm's immune system so that the wasp eggs can develop. This is in stark contrast to usual virus behaviour that we are quite used to seeing, where it overtakes the host cell machinery to make millions of its own  kind, ultimately resulting in the death of the host. 

Rather, Polydnaviruses also have some other tricks up their sleeve to help them combat the immune system. Not only can these viruses produce proteins that can inactivate attacks made upon the viral infection, they can also abort apoptosis (programmed cell death), the cell's self-destruct button to keep the infection from spreading further. While the virus seems to be putting in a lot of effort into safeguarding the interest of its friend, the parasitoid wasp, there is some selfishness behind this great act of generosity. The clue to this lies in the second aim of the polydnaviruses 

2. Ensure that it passes itself onto the next generation of its host.

To accomplish their second mission, Polydnaviruses have developed an interesting scheme of their own. Over generations of mutualism with their hosts, the Polydnaviruses have replicated their genome, broken them into smaller pieces (called proviral segments) and distributed them into genome of their respective hosts. During the process of reproduction, the host must first replicate its entire genome, and while doing so, also copies the pro viral segments. For every egg that the wasp makes, it also copies the complete viral genome into it and this is why the Polydnaviruses are so selfless after hijacking the worm immune system. For every egg that matures into an adult wasp, the virus makes it to the next generation, where it can repeat the same process and ensure its own survival. 

A recent publication Gaelen Burke et al at the University of Georgia and published in PLoS Genetics, has shed more light on how the process takes place. Using next generation sequencing technology, the researchers investigated the genome of a host, Microliptis demolitor and found some interesting facts about the pro viral segments of the M. demolitor bracovirus (MdBV) embedded in its genome. The researchers found that the pro viral segments were packed in the form of circular DNA segments and dispersed at at least 8 distinct locations in the host genome. All these segments were accompanied with unique sequences on either sides that would help them be recognized during reassembly. After reassembly, the virus exists as a provirus in each and every cell of its host but chooses to replicate only in the calyx cells in the ovaries of its host, where once again, it makes its way into the eggs and thus, the next generation. 

No wonder viruses have a hard time getting positive reviews!


Burke, G., Walden, K., Whitfield, J., Robertson, H., & Strand, M. (2014). Widespread Genome Reorganization of an Obligate Virus Mutualist PLoS Genetics, 10 (9) DOI: 10.1371/journal.pgen.1004660


Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…