Skip to main content

RotM: Interview with Prof. Kenro Kusumi

Kenro Kusumi with Jeanne Wilson-Rawls and Elizabeth Hutchins
Prof. Kenro Kusumi (R) with authors of the paper,
Jeanne Wilson-Rawls (L) and Elizabeth Hutchins (centre).
Photo credit: Joel Robertson. 
We, continue our Researcher of the Month initiative, with an interview with Professor Kenro Kusumi, who studies development, regeneration and diseases of the spine in his lab at the School of Life Sciences at the Arizona State University. Prof. Kusumi's expertise lies in developmental biology, embryology, evolution and genomics and recently published a paper in PLOS ONE on his findings from tail regeneration seen in green anole lizards which will pave way to finding regenerative treatment methods for diseases such as arthritis, scoliosis etc. 

CTS: For the benefit of our readers, could you please summarize your recent findings.

KK: In order to examine the genes that are differentially expressed within the regenerating lizard tail, we used RNA-Seq to assess all the genes expressed at 25 days of regeneration. This is a stage that marks maximal growth of the lizard tail, with formation of new tissues towards the base and patterning of those tissues towards the tip. We were able to read all the output of the 23,000 or so lizard genes in five sections along the tail in multiple replicates (n=5). By carrying out bioinformatic analysis and statistical tests, we found that at least 326 genes were turned on in specific spots within the regenerating tail. This gave us the first clues in the lizard as to the genetic ‘recipe’ for regeneration, and where each of the ingredients has to be used.

CTS: How do you envisage that your findings will be applied to treating patients in the future. 

Kenro Kusumi collecting specimen of anole lizards in Panama with Jeanne Wilson-Rawls
Prof. Kusumi with Prof. Jeanne collecting 
specimens of anole lizards in Panama
(Photo courtesy: Kenro Kusumi)
KK: Regenerating major parts of the human body parts will a challenge for the future. This research points out some of the avenues towards that goal. As anyone who suffers from arthritis knows, an important part of the limb are joints, which are cushioned by a specific type of cartilage. Lizards grow lots of this cartilage in their regenerated tails, and we hope to that this process can be activated to repair arthritis in humans. Lizards also regrow their spinal cord and their ability to use their tails. Activating nerve regeneration could help people suffering from spinal cord injury and would be necessary to regrow limbs.

Because lizards and people have a relatively recent common ancestor, compared with frogs and fish, we share many more similarities in the genome, or the genetic instructions within each cell. Almost all of the 326 genes that we identified in the regeneration are shared between lizards and humans. Over time, we suspect that these genes have changed between lizards and humans as to where and how much they are expressed in the tissue after injury. There are already drugs developed that alter the expression of some of these families of genes, and our hope is that in the future, we can reprogram cells for regenerative therapies.

CTS: Since we have a fair idea of how regeneration works and like you mentioned, even have a few drugs that can alter expression of certain genes, how soon would you reckon, that regenerative medicine will become part of mainstream treatments? 

KK:This is a hard question to answer, since clinical trials can be very time-consuming and slow. I would hope that findings within the next 5 years could then find applications in the clinic and be fully tested in the next 20 years.

CTS: What are the greatest hurdles (apart from Clinical trials) that these treatments need to pass before they become every day techniques. 

KK: Testing in mammalian model systems will be important. While genes that regulate regeneration and cell proliferation can be activated, it will be critical to establish the safety of activating genetic pathways in models like to mouse, to avoid any unintended consequences.

CTS: Mice tend be to be preferred choice of models when it comes for experimentation and there is evidence for regeneration in them too. Why have you chosen green anole lizards as your model organism?

English: Commons:Category:Anolis carolinensis
Anolis carolinensis
(Photo credit: Wikipedia)
KK: While mammals display limited regenerative capacity, such as the digit tips at neonatal stages (Rinkevich et al., 2011), lizards are the most closely related animals to human that are able to regrow entire body appendages as adults, such as the tail that includes tissues such as skin, skeletal muscle, cartilage, blood vessels, and spinal cord. This capacity for regeneration is also observed in fish (e.g., zebrafish) and amphibians (e.g., axolotl, newt, and frog tadpoles), but not in mammals and birds. The genome sequence of the first lizard, the green anole, was published in 2011 (Alföldi et al., Nature) and molecular analysis of the process in the lizard model became possible. Building on this genome with high coverage annotation (Eckalbar et al., BMC Genomics, 2013), we were able to identify the genes that are differentially expressed along the growing lizard tail.

CTS: Why is it that blastemas do not work in more developed organisms such as mice and humans, when they seem to working well in lesser developed animals such salamanders.

KK: The blastema is not a universal structure formed during regeneration. The original blastema concept arose prior to our understanding of stem cells, and the idea was that there was an undifferentiated mass of multipotent cells localized at the growing tip. The blastema in amphibians was described as avascular. The blastema structure was analogous to embryonic structures such as the elongating presomitic mesoderm or the limb bud.. The regeneration of the amphibian limb involves a region of highly proliferative cells adjacent to the wound epithelium, the blastema, with tissues differentiating as they grow more distant from the blastema. 

Elizabeth Hutchins during a field trip in Panama
Ms. Hutchins enjoying a lighter moment
during her field trip in Panama.
(Photo courtesy: Kenro Kusumi)
One of the key findings of this paper is that regeneration of the lizard tail appears to follow a non-blastema, more distributed model. Evidence for this comes for two major sources: distribution of markers for proliferating cells (PCNA and MCM2O and patterns of gene expression of stem/progenitor cells markers within the lizard tail. In the regeneration of the newt, PNCA and MCM2 immunostaining localizes regions of proliferative growth in the blastema. In contrast, in the lizard tail, PCNA and MCM2 immunostaining is observed is regions of tissue all along the regenerating tail, and skeletal muscle and cartilage differentiation occurs along the length of the regenerating tail during outgrowth. It is not limited to the most proximal regions. Furthermore, the distal tip region of the regenerating lizard tail is highly vascular, unlike a blastema, which is avascular. Genes for stem cell and progenitor cells (hematopoietic, musculoskeletal) are highly expressed in purified lizard satellite cells or embryos, but there is no region of elevated expression within the regenerating tail. Together, these data suggest that the blastema model of anamniote limb regeneration does not accurately reflect the regenerative process in tail regeneration of the lizard, an amniote vertebrate. That is relevant for developing human therapies; if a blastema is not a conserved feature of the regenerative process in amniotes, then we would be pursuing the wrong direction in trying to recreate one in mammals.


Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JJ, Lindblad-Toh K, Di Palma F, Alföldi J, Huentelman MJ, & Kusumi K (2013). Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC genomics, 14 PMID: 23343042

Rinkevich Y, Lindau P, Ueno H, Longaker MT, & Weissman IL (2011). Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 476 (7361), 409-13 PMID: 21866153

Hutchins, E., Markov, G., Eckalbar, W., George, R., King, J., Tokuyama, M., Geiger, L., Emmert, N., Ammar, M., Allen, A., Siniard, A., Corneveaux, J., Fisher, R., Wade, J., DeNardo, D., Rawls, J., Huentelman, M., Wilson-Rawls, J., & Kusumi, K. (2014). Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms PLoS ONE, 9 (8) DOI: 10.1371/journal.pone.0105004


Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…