Skip to main content

RotM: Interview with Dr. Justin Boddey

As part of our continuing effort to bring to you the latest developments in the field of science, we are proud to introduce a new section to our blog, Researcher of the Month (RotM), where we will speak about ground breaking research findings and to the researchers behind the work. 

In our first RotM interview, we spoke to Dr. Justin Boddey, a researcher at the Infection and Immunity Division at the Walter and Eliza Hill Institute, Australia. Dr. Justin recently published his findings regarding Plasmepsin V in PLoS Biology, which has shed new light on our understanding of malarial parasite, Plasmodium, and how we can prevent its spread. 
Here's Dr. Justin telling us more about his findings. 

CTS: For the benefit of our readers, please tell us about the fresh perspective that
Dr. Justin in his lab at WEHI
your recent findings have provided to tackling malaria.

JB: Malaria parasites are very clever; they invade red blood cells and change them by delivering more than 300 proteins into them. This is required for the malarial parasite to survive in our body but this is also what makes people feel sick. We have developed a drug-like compound that blocks a parasite enzyme, called Plasmepsin V (PMV), which controls protein delivery into red blood cells. This prevents malaria parasites from sufficiently changing the cells and they die.

CTS: How does the compound that you have developed block PMV?
JB: We developed PMV inhibitors, called WEHI-916, by copying the general shape of malaria proteins that PMV can recognise. The inhibitors bind to PMV and block its activity due to which malaria causing proteins cannot be transported correctly. If you think about PMV as a lock in a door, we developed a very small key that fits inside the lock and blocks any other key from gaining access. So the lock is now useless, and nothing can go through the door.

CTS: From your publication, we have found that WEHI-916, has a small window to be effective (20-30 hours after erthyrocyte invasion). How do you envisage the inhibitor to be successful in treating malaria?
JB: Actually, the inhibitor WEHI-916 blocks protein transport very early in the parasite's lifecycle. However, it takes some time for the parasites to die from the blockage. Many antimalarial drugs have a specific window of activity, so this is not a big concern. Compounds based on WEHI-916 could be useful for prophylaxis, in addition to treatment of malaria.

CTS: What happens next? How does WEHI-916 become a drug against malaria?
JB:The development of WEHI-916 is the first step toward a new drug. However,  WEHI-916 cannot become a marketable drug. It is a peptide. Its value lies in the demonstration that inhibition of Plasmepsin V kills the parasite. So future drugs that have the same activity would be possible drugs. We aim to work with people like the Medicines for Malaria Venture (MMV) to help in development of the drug and take it through clinical trials.

CTS:What are the hurdles when it comes to combating infectious diseases such as malaria?
JB: Drug resistance is a major hurdle since parasites evolve to overcome drugs that are effective against them. So, we have to constantly work on identifying new targets that may be suitable for inhibition by antimalarial drugs. For this, we study the molecular mechanisms underlying essential processes in parasites, such as how they survive inside the human cells they infect. That is why the demonstration that PMV is a valid antimalarial drug target is so exciting.

CTS: Of all diseases and disorders, why did you choose to study malaria?
JB: Malaria has plagued humans for over 100,000 years and is still an enormous global health problem today. So I believe it is a very important cause. I am also fascinated by the way malaria parasites manipulate their human host to ensure their own survival and am driven to understand this at the molecular level.


  1. Great read. It will be exciting to see how medicinal chemistry will be used to make a range of peptidomimetics against PMV.

  2. coffeetablescienceJuly 31, 2014 at 2:08 PM

    Hey Christopher,

    Glad you liked our post! It will indeed be interesting to see how well we can exploit this finding about PMV to prevent malaria.

    But that's the best part of science! Its never a one man's job. It needs collaboration, information sharing and welcomes different approaches to the same problem!
    So,the possibilities are endless!


Post a Comment

Please let us know your thoughts in the comments section below.

Popular posts from this blog

Do free energy magnetic motors really work?

The internet is rife with websites that promote generators that are capable of providing electricity without using any fuel. Built largely with magnets, these 'free energy generators' promise to cut your electricity bills and provide a much greener alternative to the electricity that is largely generated out of fossil fuels. Elaborate videos that give you estimates of how much money you can save without revealing any details of how to go about it, manage to keep the audience hooked on for a while, but $40 price tag, the loads of freebies and the instant $10 discount for not leaving the page, make the product and its seller highly suspicious. So, we decided to find out if these free energy magnetic motors really work?

The Principle

The magnetic motor works on the simple principle that we all already know, 'Like poles repel each other while opposite poles attract each other'. By arranging the magnets in a fashion where only like poles face each other, one can simply set t…

Why Sci-Hub’s story is so crucial to science?

On the 28th of October 2015, Judge Robert Sweet in his ruling at the New York district court declared that the website be blocked with immediate effect and managed to stop hundreds and thousands of researchers and science enthusiasts from accessing the holy grail of today’s science, the research paper.
What should be a simple means to communicate to the world one’s research findings, has become a currency of some sort. A ticket to a researcher’s professional success, a magnet for an investigator to attract funding for his lab and the elusive piece of the puzzle that the publishing group can hold you ransom for, until you cough up some good cash ($30 or above for a single article and thousands of dollars for a bundled annual subscription)
What Judge Sweet termed as a “disservice (to) public interest”, is actually a small website that allows you access to scientific research, old and new, and for free. Sci- Hub. Org, started in 2011, as a trusted place to access research …

Generating electricity from flapping tree leaves

As kids, you might have spent many afternoons, under a huge tree, enjoying its shade. In a tropical country like India, trees are a welcome sight in the month of May, when the sun is blazing in the sky and the shade offered by them is a hundred thousand times better than artificial cooling of the air conditioning units. But never in our dream would we have thought that the rustling of the tiny leaves of the trees could one day make electricity for us.Because that requires a Hendersonian moment! (just in a bit)

This brilliant idea has come from the lab of a biophysicist at Iowa State University, Dr. Michael McCloskey, whose work at the University largely involves the study of membrane transport in algae and adult born neurons but also has a background in plant sciences. It was his colleague in the department of genetics, Dr. Eric Henderson who first came up with this plan of harvesting energy from leaves as he wondered how much kinetic energy was being generated when winds blow across l…

5 things driverless cars will do to change our future?

The race for building the world’s first commercially available driverless car is on. Google seems to be leading the pack and in its own charismatic style has been very open about it. Elon Musk’s Tesla is considered the second best with their cars having almost automated the driving process. Tech favourites, Apple also seem to be in the race but everything is under wraps, as of now, and there is not even a hint of what Apple is planning to make, the car, the software or simply make the car accessible with your Apple ID.
Once part of science fiction, driverless cars will soon be a part of our lives and with major automobile manufacturers such as General Motors, Toyota, Ford investing in the technology, prototypes of driverless cars will soon be seen on the roads. Before we get there, a quick review.
The Driverless car
The concept of automated driving has been around for close to a century but progress was slow due to unavailability of technology. For a car to be autonomous, it needs to kno…

Solar cells that work in rain

In case you have read my last month’s guest post about harvesting solar energy in rust, you would be delighted to know that there has been yet another breakthrough in our attempt to harness solar energy.  For many years, solar energy has been targeted for being unavailable at night and during rains. The problem of utilizing solar energy at night can be resolved with the help of metal oxide cells as elaborated in my above post (do read it, if you have not done so already). And now researchers at the Ocean University in China have addressed the second problem and developed solar cells that can actually use rain drops to generate electricity.
Published in the German journal Angewandte Chemie, the paper titled, A Solar Cell Triggered by Sun and Rain, opens a new realm of possibilities when harnessing solar energy. Coating the solar cell with a thin film of graphene allows the cell to function even when it is raining. Graphene is nothing but reduced form of graphite that consists of a hone…